Geography of the Physical Environment

Batchuluun Yembuu Editor

The Physical Geography of Mongolia

Geography of the Physical Environment

The *Geography of the Physical Environment* book series provides a platform for scientific contributions in the field of Physical Geography and its subdisciplines. It publishes a broad portfolio of scientific books covering case studies, theoretical and applied approaches as well as novel developments and techniques in the field. The scope is not limited to a certain spatial scale and can cover local and regional to continental and global facets. Books with strong regional focus should be well illustrated including significant maps and meaningful figures to be potentially used as field guides and standard references for the respective area.

The series appeals to scientists and students in the field of geography as well as regional scientists, landscape planners, policy makers, and everyone interested in wide-ranging aspects of modern Physical Geography. Peer-reviewed research monographs, edited volumes, advance and under-graduate level textbooks, and conference proceedings covering the major topics in Physical Geography are included in the series. Submissions to the Book Series are also invited on the theme 'The Physical Geography of...', with a relevant subtitle of the author's/editor's choice. Please contact the Publisher for further information and to receive a Book Proposal Form.

More information about this series at http://www.springer.com/series/15117

Batchuluun Yembuu Editor

The Physical Geography of Mongolia

Editor Batchuluun Yembuu Department of Geography Mongolian National University of Education Ulaanbaatar, Mongolia

ISSN 2366-8865 ISSN 2366-8873 (electronic) Geography of the Physical Environment ISBN 978-3-030-61433-1 ISBN 978-3-030-61434-8 (eBook) https://doi.org/10.1007/978-3-030-61434-8

© Springer Nature Switzerland AG 2021

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Cover image by Sonja Weber, München

This Springer imprint is published by the registered company Springer Nature Switzerland AG The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Preface

Mongolia is a unique country for geographers, and it has very diverse geographical features, natural landscapes, a long history, as well as all the geomorphological processes. Even many scientific articles and research papers can be found in a variety of sources, such as the internet, related to Mongolia's geography, but no integrated and systematic academically oriented book that we are planning to compile. The chapters of the book will provide readers with general information and features of the physical geography of Mongolia, as well as new findings of the latest research.

Mongolia is a country that occupies vast areas in the center of the continent and has a rich and ancient history with many natural and geographical features. For these reasons, many foreigners came here out of interest to study the natural features. Especially in the second half of the nineteenth century and the beginning of the twentieth century, the research on Mongolian geography progressed considerably. On the basis of these researches, the Institute for Geography of the Geography of Mongolia (1969) published a full-fledged monograph "Physical Geography of Mongolia" (edited by Sh. Tsegmid), which is still the main source of research.

Since then, significant progress has been made in the field of physical geography research, and many new studies were carried out on the subject, but no complete book has been written. In particular, there are no books in English, and readers are very limited to the information on geography of Mongolia, which is only briefly presented at sessions of tourism organizations and in other reports. In this regard, most of the foreign sources of research on Mongolian geography use creations of foreigners, and materials of local authors are not widely available in English.

For example, with regard to foreign studies on Mongolia and the material used, the work of national authors is very rare, and although in some cases projects are implemented with foreign assistance, this is often only one aspect of the issue that is very common. To this end, this book was used as a result of the studies by many national scientists, and each member of the author group has many years of experience in writing the physical geography textbooks.

Therefore, it should be noted that the purpose of this book is to consider a simple form of writing for readers, students, and beginners, rather than for professional researchers. The primary goal of this book is to provide its readers with a more comprehensive picture of Mongolia and its geographical features.

There are numberless materials related to the physical geography of Mongolia, permafrost, and glaciers in foreign languages, internet sources, articles, encyclopedias, and so on. Owing to the published languages (Russian, German, Chinese, etc.), the geographical names of places are written differently in a number of sources. For instance, the historical area of Zuungar Gobi (in Mongolian) is a desert area located between the Mongol Altai mountains in the north and the Tian Shan in the south; it derives its name from the local tribe of Jungar, or Oirat; it is written as "Jungaria", "Jungar", "Dzungaria", and so on. Similar examples are *Huh Nor* or Khukh nuur (nuur means lake in Mongolian), *Hara Hoto* (in Russian), *Khar Khot* (in Mongolian); and *Ejnii gol* (gol is a river) is in Chinese inner Mongolian dialect and it is written as *Eznii Gol* in this book. Thus, we used the standard of written foreign words in the Mongolian language to unify the different types of names.

It is a challenge to publish a comprehensive work on the physical geography of Mongolia. Voluminous excellent works have been written from various points of view. I believe that the book provides an intermediate depth material coverage that is appropriate for the public.

The data in this book, related to the height of the mountain peak, elevation of the weather stations, and river length, are based on official information of the National Statistical Office and the National Authority of Geodesy and Cartography. In terms of geographical coordination, the places were determined from the GPS data of the Google Maps, while the sources of the climate parameters are based on the National Institute of Meteorology and resource materials of the Ministry of Environment and Nature.

This book consists of 11 chapters, including color maps, pictures, and tables. The main structure of the chapters consisted of abstract and key terms, and then begins with a discussion on the overview of the research history in the field, followed by the main issues depending on the field. In addition, the readers would probably note that the book is extensively illustrated with full-color maps, diagrams, and photos.

Chapter 1 briefly presents the general characteristics of Mongolia and some important concepts. The chapter begins with a discussion of detailed descriptions of geographical location, physical features, climate conditions, water resources, population, and culture. Chapter 2 provides a brief history of the territorial transformation and administration of Mongolia. The chapter summarizes an overview of studies on physical geography of Mongolia.

Geomorphology of Mongolia is the subject matter of Chap. 3 encompassing geological formations, landforms, and relief, a scheme of geomorphological zonation. The last part of the chapter describes the morphological characteristics of each geomorphological region, which have been modified and updated based on the results of research by well-known scientists.

Climate and climate change of Mongolia are addressed in Chap. 4. This chapter begins with an overview of climate research in Mongolia conducted by national and foreign scientists. Furthermore, it shows the driving factors of the Mongolia's climate condition, and the spatial features of the main parameters of climate are introduced. Lastly, it presents about the climate change in the country and its impacts. Chapter 5 covers the hydrography of

Mongolia. In the first section of the chapter, an overview of Mongolian hydrological research is introduced. The geographical background of the surface water is introduced in the second part, describing the morphological, hydrological, and ecological characteristics of rivers and lakes, including the description of the genetic lake types. The third section introduces ground-water resources and its geographical distribution.

Glacial and periglacial processes are presented in Chap. 6. The first part of this chapter relates to the Mongolian glacier study review factors such as climate, depressions, surface elevation, sedimentation, geographical distribution, and latitude correlation. The following section illustrates the distribution of glaciers Mongolian Altai, Khangai, and Khuvsgul mountains, as evidenced by changes in the ancient and modern glacial traces and the extent of the area as a result of climate change impacts, causes, and consequences. The effects of glaciers on the surface caused by the surface forms and the changes in the hydrological network due to the global warming process were discussed.

In particular, the chapter analyzes key geographical studies aimed at exploring the physical features of the natural patterns and conditions related to the geomorphology, geology, hydrography, climate and soil characters, glacier, as well as regional variations.

Chapter 7 presents the permafrost distribution in Mongolia, general characteristics of permafrost, cryogenic features and analyzes the degradation of permafrost. The distribution of permafrost is controlled by the climate in the north part of Mongolia and local environmental factors in the middle of the country or the edge of Siberian permafrost, with continuous, discontinuous, sporadic, and isolated types. Also, some examples of permafrost monitoring in Mongolia and the impacts of permafrost caused by climate change are introduced in this chapter.

Soil and processes of degradation and erosion are discussed in Chap. 8. It includes the introduction of the majority type of soils in the country and its distribution. Mongolia has almost all types of soil in the temperate zone of the world, from the mountain tundra to the over desert. But the same type of soil occurs in the mountains and hills, and it is difficult to classify and diagnose. Major classification of a total of 10 types of soil morphology is written and explained its geographic distribution in the chapter.

Chapter 9 describes the biogeographical characteristics of Mongolia in context of physical geography. Thus, it focused on result issues related to the research of vegetation and zoogeographical regions of Mongolia. Landscape diversity and extreme climatic conditions contribute to the diversity of ecosystems of the country. Mongolia's fauna includes 141 mammal species, 502 bird species, and 79 fish species. More than 3127 species of vascular plants, 574 species of mushrooms, 1056 species of lichens, 2003 species of algae, and 580 species of mushrooms have been found in Mongolia.

Chapter 10 briefly presents the development and compilation of a revised map of a physiographic region of Mongolia and gives an overview of physiographic mapping in Mongolia, and zonation on the natural components has been defined. Due to the different landscape forms and natural conditions, especially from south to the north and also vertical layers caused by high mountain ranges, the distributions and patterns of natural zones are more complicated. They form a series of altitudinal belts in the mountainous area and latitudinal zones across the country from north to eastern plains and plateaus and southern desert regions. In the mountain zones of the north and west, the pattern is more complex because elevation rather than latitude is the dominant factor, and there are striking changes over relatively short distances. Within Mongolia, there are six main environmental zones and belts (with subdivisions): High mountain and mountain taiga, mixed and deciduous forest, and forest steppe, steppe, Gobi (desert-steppe), and desert zones.

Land use and nature conservation issues were dealt with in Chap. 11. It presents agricultural and urban land resources, protected areas, deforestation, and reforestation. The chapter discusses the issues of forest cover, protected areas, and anthropogenic changes in Mongolia.

Ulaanbaatar, Mongolia 2020 Prof. Dr. Batchuluun Yembuu

Acknowledgements

This book was prepared by professors' team at the Geography Department of the Mongolian National University of Education (MNUE). I wish to express my gratitude to all authors and my colleagues for their cooperation in the process of preparation of this book. I would also like to express my special gratitude to professor Narantsetseg Dorjgotov, Deputy Director of MNUE, for her invaluable support. The authors would like to thank their colleagues who made useful suggestions and shared their research works for this book, in particular Dr. Battogtokh Dorjgotov, Dr. Batkhishig Ochirbat and Dr. Oyungerel Jugder from the Institute of Geography and Geoecology, Dr. Gomboludev, Dr. Nazagdorj, Dr. Davaa from the Institute of Meteorology, Hydrology and Environmental Monitoring, Prof. P. D. Gunin from the Geographic Institute of Russia and Dr. Ogonbayar from Khovd University. In addition, special thanks to my students, Munkh-Erdene Tsogtgerel, Bulga-Erdene, Azbayar and Otgonbat Dambajantsan, who made up most of the maps presented in the book.

Finally, I would like to thank the Springer team for their fruitful collaboration. I am also extremely grateful to Dr. Michael Leuchner, former Publishing Editor Earth Sciences, Geography and Environment, for his enormous editorial efforts and encouragement from the start, and the kind cooperation of Ms. Doris Bleier, Ms. Carmen Spelbos and Mr. Ambrose Berkumans from Springer for their assistance. The anonymous reviewers, who provided useful and wise comments on the book, were appreciated.

Prof. Dr. Batchuluun Yembuu

Contents

1	General Geographical Characteristics of Mongolia Batchuluun Yembuu	1
2	Historical Geography: Administrative Division and Research in Physical Geography of Mongolia Batchuluun Yembuu and Dash Doljin	9
3	The Relief and Geomorphological Characteristics of Mongolia Dash Doljin and Batchuluun Yembuu	23
4	Climate and Climate Change of Mongolia Batchuluun Yembuu	51
5	Hydrography of Mongolia. Navchaa Tugjamba	77
6	Glaciers of Mongolia Ser-Od Tsedevdorj	101
7	Permafrost in Mongolia	119
8	Soils of Mongolia. Sandag Khadbaatar	135
9	Biogeographical Characteristics of Mongolia.	161
10	Division of the Physiographic and Natural Regions in Mongolia Dash Doljin and Batchuluun Yembuu	177
11	Land Use and Nature Conservation in Mongolia Bat-Erdene Tsedev	195
Ind	ex	213

Editor and Contributors

About the Editor

Batchuluun Yembuu is a professor in the Department of Geography at Mongolian National University of Education. She has published widely in the areas of the Earth Science, General Physical Geography and Geography Education, with more than 200 publications. She is also the author of several books, such as Earth Science, General Physical Geography, The Dictionary of Physical Geography and so on, and several geography textbooks. She is the founder and an executive director of the Mongolian Association for Geographic Education (MAGE) and editor-in-chief of Geoforum-Mongolia journal.

Contributors

Avirmed Dashtseren is a leading researcher and Head of the Permafrost Division at the Institute of Geography and Geoecology, Mongolian Academy of Sciences. He obtained his Ph.D. degree from the Graduate School of Environmental Science, Hokkaido University in Japan. His research is focused on the state of the marginal of permafrost and glaciers in Mongolia in nexus with the interaction of climate change and ecosystem.

Dash Doljin is a professor of geography at Mongolian National University of Education. He was formerly employed at the Institute of Geography and Geo-ecology of the Mongolian Academy of Science for more than 30 years. Besides more than 200 publications and maps related to the physical geography, he had developed updated versions of the physiographic, landscape regionalization of Mongolia, which include the National Atlas of Mongolia (1990, 2009). He is the author of the maps related to physical geography of Mongolia in the Desertification Atlas of Mongolia (2014).

Sandag Khadbaatar is an associate professor in the Geography Department of the Mongolian National University of Education. He obtained his Ph.D. degree in Moscow, Russia in 2005, at the Soil and Landscape in the Selenge river basins. His research interests are physical geography, soil science, and geomorphology. He authored and coauthored many books. The most recent one is titled, *Transformation of land ecosystems in the southern part of the Baikal basin*, published in Russia (in Russian) in 2018.

Bat-Erdene Tsedev Ph.D. in Geography, Associate Professor of Mongolian National University of Education. His research interest includes GIS, remote sensing and geospatial technologies, and urban land use.

Ser-Od Tsedevdorj holds a doctoral degree and is a senior lecturer at the Department of Geography. He teaches the courses on Physical Geography of Mongolia. His current research interests include physical geography, land-scape studies and glacier environment. He is a member of Joint Russian–Mongolian complex geographical expedition to the Tavan Bogd mountain massif since 2015.

Khurelbaatar Tsogbadral is concurrently the head of the Department of Geography, Mongolian National University of Education. His research interests include tourism and recreational geography. He holds a Ph.D. on the geoecological issues of Mongolia. His current research interests include recreational geography and the environment study.

Navchaa Tugjamba obtained M.Sc. in Environmental Sciences from UNESCO-IHE, The Netherlands and holds Ph.D. She has been working in the field of geography research and teaching for around 20 years. Her research results were published in the international peer-reviewed journals and presented at the international level conferences. She has written several books on environmental management, water resources management and tourism education. Her research interests are water and ecosystem management, ecotourism and sustainable development.

List of Figures

Fig. 1.1	Elevation profile from the west (Mongol Altai) to the	2
F ' 1.0	east (Dornod plain) through 48°00′N	3
Fig. 1.2	Elevation profile from the north to the south through	2
F ' 0.1	107°00′E	3
Fig. 2.1	Itinerary of N.M. Przhevalsky and Pevtsov in	
	Mongolia	13
Fig. 2.2	Itinerary of Kozlov and others' expeditions in	
	Mongolia	17
Fig. 2.3	Itinerary of Potanin and Obruchev expeditions in	
	Mongolia	17
Fig. 2.4	Itinerary of Andrews expedition in Mongolia	19
Fig. 3.1	Relief and elevation of Mongolia.	25
Fig. 3.2	Hypsometric curves of the surface in Mongolia	25
Fig. 3.3	Paleogeomorphological scheme of the early and	
	middle Jurassic of Mongolia	27
Fig. 3.4	Paleogeomorphological scheme of Mongolia.	
	Neogene.	29
Fig. 3.5	Volcanic type of relief	34
Fig. 3.6	Geomorphological regions of Mongolia	35
Fig. 3.7	Hypsographic curve of the Mongol Altai	36
Fig. 3.8	Overview of the main morphological structures of the	
	Mongol Altai	37
Fig. 3.9	Glacier circus	38
Fig. 3.10	Orographic scheme of Khangai mountains range	39
Fig. 3.11	Scheme of the ancient glaciation of Khangai	
-	mountains	40
Fig. 3.12	Basalt canyon in Chuluut river (own photo). Valley	
-	basalts of the Chuluut river (I) and Tagin Gorkhi (II)	41
Fig. 3.13	Khagiin Khar lake of glacial origin in the central part	
-	of Khentii mountains	42
Fig. 3.14	Mid-altitude mountains in the Numrug river basin	43
Fig. 3.15	Alpine type relief in the desert region	44
Fig. 3.16	Buurug Del sand dunes	45
Fig. 3.17	Alluvial fans and sediments in the southern slope of	
0	Nemegt mountain	46

Fig. 3.18	Granite massif	47
Fig. 3.19	Relief types of the Eastern Mongolia	48
Fig. 3.20	Geological-geomorphological profile through	
	the Eastern-Mongolian Plain Types of rocks:	
	1—intrusive, 2—effusive basic, 3—metamorphic,	
	4—sedimentary	48
Fig. 4.1	The spatial distribution of the yearly amount of global	
U	irradiation (kWh/m ²)	56
Fig. 4.2	a Variations of the sun altitude at solar noon, b	
0	Annual mean temperature at two stations:	
	Rinchinlhumbe (51°7′N) and Zamiin-Uud (43°44′N)	56
Fig. 4.3	The variation of the sunshine hours depends on the	
119. 1.5	latitudes	57
Fig. 4.4	Geographic distribution of mean air temperature in	57
1.9	January	58
Fig. 4.5	The regional variations of the average minimum	50
115. 1.5	temperature (°C): Ulaangom and Dalanzadgad	58
Fig. 4.6	Geographic distribution of mean air temperature in	50
1 lg. 4.0	July	59
Fig. 4.7	Dates of daily mean temperatures exceeding 10 °C	59 59
Fig. 4.8	Spatial distribution of the mean annual precipitation	39
г1g. 4.0	between 1960 and 1990	61
Fig. 4.9		01
11g. 4.9	Spatial differences in precipitation between Khangai (Paitag) and Trans Altai Cabi (Paitag) ragions	61
\mathbf{Eig} 4.10	(Baitag) and Trans-Altai Gobi (Baitag) regions	61 62
Fig. 4.10	Stable snow covered days	
Fig. 4.11	Spatial distribution of air pressure in January	63
Fig. 4.12	Spatial distribution of air pressure in July	63
Fig. 4.13	Average wind speed (m/s) in foreststeppe and desert	64
$E_{\alpha} = 4.14$	regions (2000–2011)	
Fig. 4.14	Wind directions and speed.	65
Fig. 4.15	Distribution of dust storms/1960–2008/	65
Fig. 4.16	Climatic regions in Mongolia	67
Fig. 4.17	Regional differences of the climate	69
Fig. 4.18	Mean temperature trend in different distinct ecological	
	zones: West (Ulaangom);North (Murun); East	
T	(Choibalsan); and South (Dalanzadgad) in Mongolia	70
Fig. 4.19	Multi-year trend of number of days when the daily	-
-	highest temperature is below 25 °C	70
Fig. 4.20	Precipitation change by regions	71
Fig. 4.21	Drought frequency in Mongolia	73
Fig. 5.1	Hydrological drainage basins of Mongolia Modified	
	for the educational purpose	81
Fig. 5.2	Ulz river valley	81
Fig. 5.3	Stream order of Ulz river basin	82
Fig. 5.4	Annual runoff distribution of the Khentii Mountain	
	Rivers, by the percentage.	85
Fig. 5.5	The Mongol Altai Rivers' annual runoff distribution	85
Fig. 5.6	Typical annual hydrograph of the Ulz river	86

Fig. 5.7	Some rivers' water fed, by percentage	86
Fig. 5.8	Lakes of Mongolia Modified for the educational	
	purpose	90
Fig. 5.9	Bathymetric map of Khuvsgul Lake	93
Fig. 5.10	Mineral springs of Mongolia Modified for the	
U	educational purpose	94
Fig. 5.11	Shargaljuut hot spring	96
Fig. 6.1	Glaciations near the Tavan Bogd mountain–	
0	Sapojnikov	102
Fig. 6.2	Glaciers distribution of Mongol Altai, Khangai	
	and Khuvsgul mountains	105
Fig. 6.3	a Distribution of the number of glaciers	
1.8. 0.0	morphological types. b Distribution of glacial area	
	in morphological types	106
Fig. 6.4	The melting of the Kozlov glacier and air	100
1.8. 0.1.	temperature	106
Fig. 6.5	Munkhkhairkhan mountain glacier.	107
Fig. 6.6	Glacier of Turgen mountains	108
Fig. 6.7	Munkhsaridag, Khuvsgul mountain range	110
Fig. 6.8	Dynamics of glacier massif areas.	112
Fig. 6.9	Glacier area change in the Kharkhiraa and Turgen	112
115. 0.7	mts. with area of glacier in 2000	112
Fig. 6.10	Khar nuur- Tsengel soum, Bayan-Ulgii aimag	112
Fig. 7.1	Permafrost distribution and zones in Mongolia	121
Fig. 7.1	Sorted circles on the north slope of the	121
1 lg. 7.2	Tsengelkhairkhan uul in Altai mountain	123
Fig. 7.3	Hummock area in the valley of Zuunsalaa,	123
11g. 7.5	Ulaanbaatar city	123
Fig. 7.4	Thermokarst lake in the Darkhad depression,	123
11g. 7.4	with an approximately diameter of 200 m	124
Fig. 7.5	Closed-system pingo at the Darkhad depression,	124
11g. 7.5	with approximately 12 m height and 150 m diameter	125
Fig. 7.6	Temporal variation in active layer thickness at the	123
11g. 7.0	selected monitoring sites in Mongolia	126
Fig. 7.7	Permafrost temperatures from the monitoring sites in	120
1 lg. 7.7	the Altai, Khangai, Khuvsgul and Khentii mountains	
	with different permafrost zones	127
Fig 78	*	127
Fig. 7.8	Mean annual ground temperatures at the monitoring	120
$\mathbf{E}_{\mathbf{r}}$ 70	sites in the Altai and Khangai mountains.	129
Fig. 7.9	Mean annual ground temperatures at the monitoring	120
$E_{2} = 7.10$	sites in the Khentii and Khuvsgul mountains	130
Fig. 7.10	The current situation of the old sum center of	121
E_{2} 7.11	Khyargas sum in the northern Mongolia	131
Fig. 7.11	Result of permafrost thawing under the wooden house	122
E. 0.1	in Chandmani-Undur sum in north part of Mongolia	132
Fig. 8.1	Soil vertical zones	138
Fig. 8.2	Soil belt and zones	139

Fig. 8.3	Light kastanozem layers	143
Fig. 8.4	Distribution of Kastanozem in Mongolia	143
Fig. 8.5	Desert soils and profile (Shinejinst soum,	
	Bayankhongor)	145
Fig. 8.6	Soil salinization in the oasis Ekhiin-Gol, at a depth	
	of 100 cm (Na content in water extract, mgE/100 g)	146
Fig. 8.7	Soil types.	147
Fig. 8.8	Geographic distribution of soil.	149
Fig. 8.9	New classification of soil types in Mongolia based	
	on the FAO	152
Fig. 8.10	Soil-geographic zoning of Mongolia	156
Fig. 8.11	Water erosion vulnerability map	158
Fig. 8.12	Soil wind erosion vulnerability map	159
Fig. 9.1	Phytogeographical regions of Mongolia	164
Fig. 9.2	Geographical regions of vegetation in Mongolia	165
Fig. 9.3	Comparative study in Mongolian vascular plants	166
Fig. 9.4	Distribution of some endemic species in Mongolia.	
	Endangered and threatened plant species	168
Fig. 9.5	Some endemic plants of Mongolia.	168
Fig. 9.6	Routes of A.G. Bannikov 1942–1945	169
Fig. 9.7	Zoogeographical regions and sections of Mongolia	170
Fig. 9.8	Species composition of Mongolian fauna	170
Fig. 9.9	Mammals diversity of Mongolia Inventory of	
	Mongolia's mammal diversity	173
Fig. 9.10	Distribution of rare mammals	174
Fig. 9.11	Distribution of rare birds: modified from Ecosystems	
	of Mongolia, Atlas.	175
Fig. 10.1	Physiographic Regions of Mongolia	180
Fig. 10.2	Natural zones and belts in Mongolia	184
Fig. 10.3	Annual mean temperature and precipitation variations	
	by the natural zones.	186
Fig. 10.4	Coniferous forest in the Darkhad depression	187
Fig. 10.5	Khangai mountain	188
Fig. 10.6	Khongor sand dunes	190
Fig. 10.7	Khermen Tsav, Gobi Desert	191
Fig. 10.8	Altitudinal belts in the Aj Bod mountain	192
Fig. 11.1	Land use in Mongolia	196
Fig. 11.2	Land use structure in Mongolia	197
Fig. 11.3	Arid regions pasture, Uu Durulj, Govi-Altai aimag,	100
F 11.4	Western Mongolia	198
Fig. 11.4	The built-up area of Ulaanbaatar city	200
Fig. 11.5	2011 Landsat TM image of the selected part of	001
E. 11.6	Ulaanbaatar city	201
Fig. 11.6	Classified image using 2011 data sets	201
Fig. 11.7	Digitized topographic map of Ulaanbaatar area of	202
E 11.0	1969	202
Fig. 11.8	Location of protected areas	206

Fig. 11.9	The protected area of the National Park Gorkhi-Terelj,	
	central Mongolia	206
Fig. 11.10	The protected area of the Natural Monument Eej	
	khairkhan, Western Mongolia	207
Fig. 11.11	The protected areas covered by the international	
	convention	209

List of Tables

Table 4.1	Main characteristics of climatic regions	66
Table 4.2	The annual air temperature increase rates, between	
	1961–2011 (ten stations in each with highest	
	and lowest rates)	70
Table 4.3	The precipitation changes between 1961 and 2011	
	(mm) (selected weather stations with highest and	
	lowest rate of changes)	71
Table 4.4	Current content of soil organic matters (g/m ²)	
	and its future changes (%)	73
Table 5.1	Percentage of the area and water resources of the	
	three main hydrological basins in Mongolia	83
Table 5.2	Total numbers of rivers, lakes and mineral waters	
	in Mongolia	83
Table 5.3	Rivers runoff components of Mongolia	84
Table 5.4	The average water temperature of the rivers in	
	Mongolia (°C)	88
Table 5.5	Water temperature of Ulz river and Khukh lake	88
Table 5.6	Mean values of morphologic elements of lakes	89
Table 5.7	Statistics of Mongolian lakes	89
Table 5.8	Water balance of the lakes, mm/year	94
Table 5.9	Some hot springs of Mongolia	95
Table 5.10	Groundwater resources assessment results	97
Table 6.1	Morphometric indicators of Mongolian glaciers	104
Table 6.2	The classification of glacier massive	106
Table 6.3	Change of the Munkhkhairkhan mountain glaciers,	
	1990–2006	108
Table 6.4	Late Pleistocene ELA reconstruction in the Khentii	
	mountains	111
Table 6.5	Total glacier areas in Kharkhiraa and Turgen mts.	
	and Kharkhiraa river basin	114
Table 6.6	Definition of some glacial lakes	115
Table 8.1	Characteristics of forest soil	141
Table 8.2	Genetic horizon thickness and humus content in	
	loamy kastanozem	142

Table 8.3	Genetic horizon thickness and humus content in	
	sandy loam, sandy kastanozem	142
Table 8.4	Checklist of the soil classification	148
Table 8.5	Soil classification of Mongolia	150
Table 8.6	Soil classification criteria.	152
Table 8.7	New classification of soil types in Mongolia	153
Table 9.1	Main vegetation types by the natural zones and	
	belts.	162
Table 9.2	Vegetation regions, area percentages and number	
	of species	165
Table 10.1	The physiographic regionalization of Mongolia	178
Table 10.2	The physiographic regions by areas	181
Table 10.3	The classification of natural zones and belts	184
Table 10.4	The natural zones and belts (area and percentage)	184
Table 10.5	Monthly average temperature in each natural zones	
	and belts	185
Table 10.6	Dates and annual sum of daily mean temperature	
	exceed 10 °C.	186
Table 10.7	Climatic parameters in selected places in the steppe	
	zone.	189
Table 10.8	Climatic parameters in selected places in the semi-	
	desert and desert zones	192
Table 11.1	Land use structure in Mongolia	197
Table 11.2	Area changes of an integrated land database	198
Table 11.3	Agricultural land use	199
Table 11.4	Arable land use	199
Table 11.5	The total areas for each class in different years,	
	evaluated from multitemporal GIS and RS	
	data sets.	202
Table 11.6	Land with forest resources by region, aimag and	
	the capital	203
Table 11.7	Network of protected areas	205
Table 11.8	Protection levels in protected areas	207
Table 11.9	Ramsar sites	208
Table 11.10	Properties inscribed on the World Heritage	209
Table 11.11	Man and Biosphere site	209
Table 11.12	Ecoregions in Mongolia	210